A Stefan/Mullins-Sekerka Type Problem with Memory

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a new type-ii fuzzy logic based controller for non-linear dynamical systems with application to 3-psp parallel robot

abstract type-ii fuzzy logic has shown its superiority over traditional fuzzy logic when dealing with uncertainty. type-ii fuzzy logic controllers are however newer and more promising approaches that have been recently applied to various fields due to their significant contribution especially when the noise (as an important instance of uncertainty) emerges. during the design of type- i fuz...

15 صفحه اول

On stable parametric finite element methods for the Stefan problem and the Mullins-Sekerka problem with applications to dendritic growth

We introduce a parametric finite element approximation for the Stefan problem with the Gibbs–Thomson law and kinetic undercooling, which mimics the underlying energy structure of the problem. The proposed method is also applicable to certain quasi-stationary variants, such as the Mullins–Sekerka problem. In addition, fully anisotropic energies are easily handled. The approximation has good mesh...

متن کامل

Convergence of the Phase-Field Equations to the Mullins-Sekerka Problem with Kinetic Undercooling

I prove that the solutions of the phase-field equations, on a subsequence, converge to a weak solution of the Mullins-Sekerka problem with kinetic undercooling. The method is based on energy estimates, a monotonicity formula, and the equipartition of the energy at each time. I also show that for almost all t, the limiting interface is ( d 1)-rectifiable with a square-integrable mean-curvature v...

متن کامل

Two-sided Mullins-Sekerka flow

The (two-sided) Mullins-Sekerka model is a nonlocal evolution model for closed hypersurfaces, which was originally proposed as a model for phase transitions of materials of negligible specific heat. Under this evolution the propagating interfaces maintain the enclosed volume while the area of the interfaces decreases. We will show by means of an example that the Mullins-Sekerka flow does not pr...

متن کامل

A Center Manifold Analysis for the Mullins–Sekerka Model

The Mullins Sekerka model is a nonlocal evolution model for hypersurfaces, which arises as a singular limit for the Cahn Hilliard equation. We show that classical solutions exist globally and tend to spheres exponentially fast, provided that they are close to a sphere initially. Our analysis is based on center manifold theory and on maximal regularity. 1998 Academic Press

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Integral Equations and Applications

سال: 1997

ISSN: 0897-3962

DOI: 10.1216/jiea/1181076000